

## Sequentially Cohen-Macaulay Rees modules

#### Naoki Taniguchi

#### Meiji University

#### Joint work with T. N. An, N. T. Dung and T. T. Phuong

Mathematical Society of Japan

at Meiji University

March 21, 2015

## N. T. Cuong, S. Goto and H. L. Truong

The equality  $I^2 = \mathfrak{q}I$  in sequentially Cohen-Macaulay rings, J. Algebra, (379) (2013), 50-79.

In [CGT],

• Characterized the sequentially Cohen-Macaulay property of  $\mathcal{R}(I)$  where I is an m-primary ideal.

## Question 1.1

When is the Rees module  $\mathcal{R}(\mathcal{M})$  sequentially Cohen-Macaulay?

- ₹ ∃ ►

## N. T. Cuong, S. Goto and H. L. Truong

The equality  $I^2 = \mathfrak{q}I$  in sequentially Cohen-Macaulay rings, J. Algebra, (379) (2013), 50-79.

In [CGT],

• Characterized the sequentially Cohen-Macaulay property of  $\mathcal{R}(I)$  where I is an m-primary ideal.

## Question 1.1

When is the Rees module  $\mathcal{R}(\mathcal{M})$  sequentially Cohen-Macaulay?

# $\S2$ Definition of sequentially C-M modules

Let R be a Noetherian ring,  $M\neq (0)$  a finitely generated R-module with  $d=\dim_R M<\infty.$  Then  $\forall n\in\mathbb{Z},$ 

 $\exists M_n \text{ the largest } R \text{-submodule of } M \text{ with } \dim_R M_n \leq n.$ 

Let

$$\begin{aligned} \mathcal{S}(M) &= \{ \dim_R N \mid N \text{ is an } R \text{-submodule of } M, N \neq (0) \} \\ &= \{ \dim R/\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}_R M \} \\ &= \{ d_1 < d_2 < \dots < d_\ell = d \} \end{aligned}$$

where  $\ell = \sharp \mathcal{S}(M)$ .

References

Let  $D_i = M_{d_i}$  for  $1 \leq \forall i \leq \ell$ . We then have a filtration

$$D_0 := (0) \subsetneq D_1 \subsetneq D_2 \subsetneq \ldots \subsetneq D_\ell = M$$

which we call the dimension filtration of M. Put  $C_i = D_i/D_{i-1}$  for  $1 \leq \forall i \leq \ell$ . Notice that  $\dim_R D_i = \dim_R C_i = d_i$  for  $1 \leq \forall i \leq \ell$ .

Let  $D_i = M_{d_i}$  for  $1 \leq \forall i \leq \ell$ . We then have a filtration

$$D_0 := (0) \subsetneq D_1 \subsetneq D_2 \subsetneq \ldots \subsetneq D_\ell = M$$

which we call the dimension filtration of M. Put  $C_i = D_i/D_{i-1}$  for  $1 \leq \forall i \leq \ell$ . Notice that  $\dim_B D_i = \dim_B C_i = d_i$  for  $1 \leq \forall i \leq \ell$ .

## Definition 2.1 ([5, 6])

(1) 
$$M$$
 is a sequentially Cohen-Macaulay  $R$ -module  
 $\stackrel{def}{\longleftrightarrow} C_i$  is a C-M  $R$ -module for  $1 \leq \forall i \leq \ell$ .

R is a sequentially Cohen-Macaulay ring (2) $\stackrel{def}{\Longleftrightarrow} \dim R < \infty \text{ and } R \text{ is a sequentially C-M module over itself.}$  In this section

- $(R, \mathfrak{m})$  a Noetherian local ring
- $M \neq (0)$  a finitely generated R-module with  $d = \dim_R M$
- $\mathcal{F} = \{F_n\}_{n \in \mathbb{Z}}$  a filtration of ideals of R s.t.  $F_1 \neq R$
- $\mathcal{M} = \{M_n\}_{n \in \mathbb{Z}}$  an  $\mathcal{F}$ -filtration of R-submodules of M
- $\mathcal{R} = \mathcal{R}(\mathcal{F})$  a Noetherian ring
- $\mathcal{R}(\mathcal{M})$  a finitely generated  $\mathcal{R}\text{-module}$

Introduction Definition of seq C-M modules Main results Graded case Application References
Let  $1 \le i \le \ell$ . We set

$$\mathcal{D}_i = \{M_n \cap D_i\}_{n \in \mathbb{Z}}, \ \mathcal{C}_i = \{[(M_n \cap D_i) + D_{i-1}]/D_{i-1}\}_{n \in \mathbb{Z}}.$$

Then  $\mathcal{D}_i$  (resp.  $\mathcal{C}_i$ ) is an  $\mathcal{F}$ -filtration of R-submodules of  $D_i$  (resp.  $C_i$ ). We have the exact sequence

$$0 \to [\mathcal{D}_{i-1}]_n \to [\mathcal{D}_i]_n \to [\mathcal{C}_i]_n \to 0$$

of R-modules for  $\forall n \in \mathbb{Z}$ . Hence

$$0 \to \mathcal{R}(\mathcal{D}_{i-1}) \to \mathcal{R}(\mathcal{D}_i) \to \mathcal{R}(\mathcal{C}_i) \to 0$$
$$0 \to \mathcal{R}'(\mathcal{D}_{i-1}) \to \mathcal{R}'(\mathcal{D}_i) \to \mathcal{R}'(\mathcal{C}_i) \to 0 \text{ and}$$
$$0 \to \mathcal{G}(\mathcal{D}_{i-1}) \to \mathcal{G}(\mathcal{D}_i) \to \mathcal{G}(\mathcal{C}_i) \to 0.$$

| Introduction | Definition of seq C-M modules | Main results | Graded case | Application | References |
|--------------|-------------------------------|--------------|-------------|-------------|------------|
|              |                               |              |             |             |            |
| Theore       | m 3.1                         |              |             |             |            |
| TFAE.        |                               |              |             |             |            |

- (1)  $\mathcal{R}'(\mathcal{M})$  is a sequentially C-M  $\mathcal{R}'$ -module.
- (2)  $\mathcal{G}(\mathcal{M})$  is a sequentially C-M  $\mathcal{G}$ -module and  $\{\mathcal{G}(\mathcal{D}_i)\}_{0 \le i \le \ell}$  is the dimension filtration of  $\mathcal{G}(\mathcal{M})$ .

When this is the case, M is a sequentially C-M R-module.

## Theorem 3.2

Suppose that M is a sequentially C-M R-module and  $F_1 \nsubseteq \mathfrak{p}$  for  $\forall \mathfrak{p} \in \operatorname{Ass}_R M$ . Then TFAE.

- (1)  $\mathcal{R}(\mathcal{M})$  is a sequentially C-M  $\mathcal{R}$ -module.
- (2)  $\mathcal{G}(\mathcal{M})$  is a sequentially C-M  $\mathcal{G}$ -module,  $\{\mathcal{G}(\mathcal{D}_i)\}_{0 \le i \le \ell}$  is the dimension filtration of  $\mathcal{G}(\mathcal{M})$  and  $a(\mathcal{G}(\mathcal{C}_i)) < 0$  for  $1 \le \forall i \le \ell$ .

When this is the case,  $\mathcal{R}'(\mathcal{M})$  is a sequentially C-M  $\mathcal{R}'\text{-module}.$ 

## §4 Graded case

Let  $R = \sum_{n>0} R_n$  be a  $\mathbb{Z}$ -graded ring. We put

$$F_n = \sum_{k \ge n} R_k$$
 for  $\forall n \in \mathbb{Z}$ .

Then  $F_n$  is a graded ideal of R,  $\mathcal{F} = \{F_n\}_{n \in \mathbb{Z}}$  is a filtration of ideals of Rand  $F_1 := R_+ \neq R$ .

Let E be a graded R-module with  $E_n = (0)$  for  $\forall n < 0$ . Put

$$E_{(n)} = \sum_{k \ge n} E_k$$
 for  $\forall n \in \mathbb{Z}$ .

Then  $E_{(n)}$  is a graded R-submodule of E,  $\mathcal{E} = \{E_{(n)}\}_{n \in \mathbb{Z}}$  is an  $\mathcal{F}$ -filtration of R-submodules of E.

Then we have

$$\underline{R = \mathcal{G}(\mathcal{F})}_{\text{and}} \text{ and } \underline{E = \mathcal{G}(\mathcal{E})}_{\text{and}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ



## Assumption 4.1

- $R = \sum_{n \ge 0} R_n$  a Noetherian  $\mathbb{Z}$ -graded ring
- $E \neq (0)$  a finitely generated graded R-module with  $d = \dim_R E < \infty$

| Introduction                                                                                                                                                                      | Definition of seq C-M modules            | Main results | Graded case                           | Application  | References |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|---------------------------------------|--------------|------------|
|                                                                                                                                                                                   |                                          |              |                                       |              |            |
| Proposi                                                                                                                                                                           | ition 4.2                                |              |                                       |              |            |
| TFAE.                                                                                                                                                                             |                                          |              |                                       |              |            |
| (1) $\mathcal{R}'(\mathcal{E}$                                                                                                                                                    | ) is a sequentially C-N                  | 1 R'-module  | 2.                                    |              |            |
| (2) $E$ is                                                                                                                                                                        | a sequentially C-M R-                    | module.      |                                       |              |            |
|                                                                                                                                                                                   |                                          |              |                                       |              |            |
| Theorem                                                                                                                                                                           | m 4.3                                    |              |                                       |              |            |
| Suppose that $R_0$ is a local ring, $E$ is a sequentially C-M $R$ -module and $F_1 \not\subseteq \mathfrak{p}$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R E$ . Then TFAE. |                                          |              |                                       |              |            |
| (1) $\mathcal{R}(\mathcal{E})$                                                                                                                                                    | ) is a sequentially C-M                  | l R-module.  |                                       |              |            |
| (2) $a(C_i)$                                                                                                                                                                      | $) < 0$ for $1 \le \forall i \le \ell$ . |              |                                       |              |            |
|                                                                                                                                                                                   |                                          |              | • • • • • • • • • • • • • • • • • • • | ■> < => < => | E          |

#### References

# $\S5$ Application –Stanley-Reisner algebras–

## Notation 5.1

- $V = \{1, 2, ..., n\}$  (n > 0) a vertex set
- $\Delta$  a simplicial complex on V s.t.  $\Delta \neq \emptyset$
- $\mathcal{F}(\Delta)$  a set of facets of  $\Delta$

• 
$$m = \sharp \mathcal{F}(\Delta) \ (>0)$$
 its cardinality

- $S = k[X_1, X_2, \dots, X_n]$  a polynomial ring over a field k
- $I_{\Delta} = (X_{i_1} X_{i_2} \cdots X_{i_n} \mid \{i_1 < i_2 < \cdots < i_r\} \notin \Delta)$
- $R = k[\Delta] = S/I_{\Lambda}$  the Stanley-Reisner ring of  $\Delta$

= nar

・ロト ・聞ト ・ヨト ・ヨト

Introduction Definition of seq C-M modules Main results Graded case Application References

We consider the  $\mathbb{Z}\text{-}\mathsf{graded}$  ring  $R=k[\Delta]=\sum_{n\geq 0}R_n$  and put

$$I_n:=\sum_{k\geq n}R_k=\mathfrak{m}^n \ \ ext{for} \ \ \forall n\in\mathbb{Z}$$

where  $\mathfrak{m} := R_+ = \sum_{n>0} R_n$ . Then  $\mathcal{F} = \{I_n\}_{n \in \mathbb{Z}}$  is an m-adic filtration of R and  $I_1 \neq R$ .

## Proposition 5.2

If  $\Delta$  is shellable, then  $\mathcal{R}'(\mathfrak{m})$  is a sequentially C-M ring.

| Introduction | Definition of seq C-M modules | Main results | Graded case | Application | References |
|--------------|-------------------------------|--------------|-------------|-------------|------------|
|              |                               |              |             |             |            |

Notice that

$$\mathfrak{p} \not\supseteq I_1 \text{ for } \forall \mathfrak{p} \in \operatorname{Ass} R \iff F \neq \emptyset \text{ for } \forall F \in \mathcal{F}(\Delta)$$
$$\iff \Delta \neq \{\emptyset\}.$$

### Theorem 5.3

Suppose that  $\Delta$  is shellable with shelling order  $F_1, F_2, \ldots, F_m \in \mathcal{F}(\Delta)$  s.t.  $\dim F_1 \ge \dim F_2 \ge \cdots \ge \dim F_m$  and  $\Delta \ne \{\emptyset\}$ . Then TFAE.

(1)  $\mathcal{R}(\mathfrak{m})$  is a sequentially C-M ring.

(2) dim  $F_i \geq \sharp \mathcal{F}(\langle F_1, F_2, \dots, F_{i-1} \rangle \cap \langle F_i \rangle)$  for  $2 \leq \forall i \leq m$ .

| Introduction | Definition of seq C-M modules | Main results | Graded case | Application | References |
|--------------|-------------------------------|--------------|-------------|-------------|------------|
|              |                               |              |             |             |            |

By Theorem 5.3 we get the following.

Corollary 5.4 Suppose that dim  $F_m \ge 1$ . If  $\langle F_1, F_2, \ldots, F_{i-1} \rangle \cap \langle F_i \rangle$  is a simplex for  $2 \le \forall i \le m$ , then  $\mathcal{R}(\mathfrak{m})$  is a sequentially C-M ring.

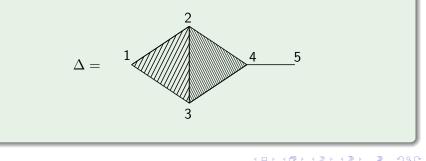


## Example 5.5

Let  $\Delta = \langle F_1, F_2, F_3 \rangle$ , where  $F_1 = \{1, 2, 3\}$ ,  $F_2 = \{2, 3, 4\}$  and  $F_3 = \{4.5\}$ . Then  $\Delta$  is shellable with numbering  $\mathcal{F}(\Delta) = \{F_1, F_2, F_3\}$  and

$$\langle F_1 \rangle \cap \langle F_2 \rangle, \quad \langle F_1, F_2 \rangle \cap \langle F_3 \rangle$$

are simplexes, so that  $\mathcal{R}(\mathfrak{m})$  is a sequentially C-M ring.

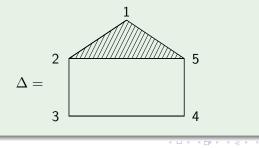


## Example 5.6

Let  $\Delta = \langle F_1, F_2, F_3, F_4 \rangle$ , where  $F_1 = \{1, 2, 5\}$ ,  $F_2 = \{2, 3\}$ ,  $F_3 = \{3, 4\}$ and  $F_4 = \{4, 5\}$ . Then  $\Delta$  is shellable with numbering  $\mathcal{F}(\Delta) = \{F_1, F_2, F_3, F_4\}$ . We put  $\Delta_1 = \langle F_1, F_2, F_3 \rangle$ ,  $\Delta_2 = \langle F_4 \rangle$ . Then

 $\sharp \mathcal{F}(\Delta_1 \cap \Delta_2) = 2 = \dim F_4 + 1 > \dim F_4,$ 

so that  $\mathcal{R}(\mathfrak{m})$  is <u>NOT</u> a sequentially C-M ring by Theorem 5.3.



| Introduction | Definition of seq C-M modules | Main results | Graded case | Application | References |
|--------------|-------------------------------|--------------|-------------|-------------|------------|
|              |                               |              |             |             |            |

#### Thank you so much for your attention.

| Introduction | Definition of seq C-M modules | Main results | Graded case | Application | References |
|--------------|-------------------------------|--------------|-------------|-------------|------------|
|              |                               |              |             |             |            |
| Refere       | nces                          |              |             |             |            |

- [1] N. T. Cuong, S. Goto and H. L. Truong, *The equality*  $I^2 = \mathfrak{q}I$  *in sequentially Cohen-Macaulay rings*, J. Algebra, **(379)** (2013), 50-79.
- G. Faltings, Über die Annulatoren lokaler Kohomologiegruppen, Archiv der Math., 30 (1978), 473–476.
- [3] S. Goto, Y. Horiuchi and H. Sakurai, Sequentially Cohen-Macaulayness versus parametric decomposition of powers of parameter ideals, J. Comm. Algebra, 2 (2010), 37–54.
- [4] S. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan, 30 (1978), 179–213.
- [5] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in: Proc. of the Ferrara Meeting in honour of Mario Fiorentini, University of Antwerp, Wilrijk, Belgium, (1998), 245–264.
- [6] R. P. Stanley, Combinatorics and commutative algebra, Second Edition, Birkhäuser, Boston, 1996.
- [7] N. Taniguchi, T.T. Phuong, N. T. Dung and T. N. An, Sequentially Cohen-Macaulay Rees modules, preprint 2014.
- [8] D. Q. Viet, A note on the Cohen-Macaulayness of Rees Algebra of filtrations, Comm. Algebra 21 (1993), 221-229.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules Ma