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§1 Introduction

.
N. T. Cuong, S. Goto and H. L. Truong
..

......

The equality I2 = qI in sequentially Cohen-Macaulay rings, J. Algebra,
(379) (2013), 50-79.

In [CGT],

Characterized the sequentially Cohen-Macaulay property of R(I)
where I is an m-primary ideal.

.
Question 1.1
..

......When is the Rees module R(M) sequentially Cohen-Macaulay?
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§2 Definition of sequentially C-M modules

Let R be a Noetherian ring, M ̸= (0) a finitely generated R-module with
d = dimR M < ∞. Then ∀n ∈ Z,

∃Mn the largest R-submodule of M with dimR Mn ≤ n.

Let

S(M) = {dimR N | N is an R-submodule of M,N ̸= (0)}
= {dimR/p | p ∈ AssR M}
= {d1 < d2 < · · · < dℓ = d}

where ℓ = ♯S(M).
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Let Di = Mdi for 1 ≤ ∀i ≤ ℓ. We then have a filtration

D0 := (0) ⊊ D1 ⊊ D2 ⊊ . . . ⊊ Dℓ = M

which we call the dimension filtration of M . Put Ci = Di/Di−1 for
1 ≤ ∀i ≤ ℓ. Notice that dimR Di = dimR Ci = di for 1 ≤ ∀i ≤ ℓ.

.
Definition 2.1 ([5, 6])
..

......

(1) M is a sequentially Cohen-Macaulay R-module
def⇐⇒ Ci is a C-M R-module for 1 ≤ ∀i ≤ ℓ.

(2) R is a sequentially Cohen-Macaulay ring
def⇐⇒ dimR < ∞ and R is a sequentially C-M module over itself.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules March 21, 2015 4 / 18
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§3 Main results

In this section

(R,m) a Noetherian local ring

M ̸= (0) a finitely generated R-module with d = dimR M

F = {Fn}n∈Z a filtration of ideals of R s.t. F1 ̸= R

M = {Mn}n∈Z an F-filtration of R-submodules of M

R = R(F) a Noetherian ring

R(M) a finitely generated R-module
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Let 1 ≤ i ≤ ℓ. We set

Di = {Mn ∩Di}n∈Z, Ci = {[(Mn ∩Di) +Di−1]/Di−1}n∈Z.

Then Di (resp. Ci) is an F-filtration of R-submodules of Di (resp. Ci).
We have the exact sequence

0 → [Di−1]n → [Di]n → [Ci]n → 0

of R-modules for ∀n ∈ Z. Hence

0 → R(Di−1) → R(Di) → R(Ci) → 0

0 → R′(Di−1) → R′(Di) → R′(Ci) → 0 and

0 → G(Di−1) → G(Di) → G(Ci) → 0.
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.
Theorem 3.1
..

......

TFAE.

(1) R′(M) is a sequentially C-M R′-module.

(2) G(M) is a sequentially C-M G-module and {G(Di)}0≤i≤ℓ is the dimension
filtration of G(M).

When this is the case, M is a sequentially C-M R-module.

.
Theorem 3.2
..

......

Suppose that M is a sequentially C-M R-module and F1 ⊈ p for ∀p ∈ AssR M .
Then TFAE.

(1) R(M) is a sequentially C-M R-module.

(2) G(M) is a sequentially C-M G-module, {G(Di)}0≤i≤ℓ is the dimension
filtration of G(M) and a(G(Ci)) < 0 for 1 ≤ ∀i ≤ ℓ.

When this is the case, R′(M) is a sequentially C-M R′-module.
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§4 Graded case

Let R =
∑

n≥0Rn be a Z-graded ring. We put

Fn =
∑
k≥n

Rk for ∀n ∈ Z.

Then Fn is a graded ideal of R, F = {Fn}n∈Z is a filtration of ideals of R
and F1 := R+ ̸= R.

Let E be a graded R-module with En = (0) for ∀n < 0. Put

E(n) =
∑
k≥n

Ek for ∀n ∈ Z.

Then E(n) is a graded R-submodule of E, E = {E(n)}n∈Z is an
F-filtration of R-submodules of E.
Then we have

R = G(F) and E = G(E).
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.
Assumption 4.1
..

......

R =
∑

n≥0Rn a Noetherian Z-graded ring

E ̸= (0) a finitely generated graded R-module with
d = dimR E < ∞
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.
Proposition 4.2
..

......

TFAE.

(1) R′(E) is a sequentially C-M R′-module.

(2) E is a sequentially C-M R-module.

.
Theorem 4.3
..

......

Suppose that R0 is a local ring, E is a sequentially C-M R-module and
F1 ⊈ p for ∀p ∈ AssR E. Then TFAE.

(1) R(E) is a sequentially C-M R-module.

(2) a(Ci) < 0 for 1 ≤ ∀i ≤ ℓ.

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules March 21, 2015 10 / 18



. . . . . .

Introduction Definition of seq C-M modules Main results Graded case Application References

§5 Application –Stanley-Reisner algebras–

.
Notation 5.1
..

......

V = {1, 2, . . . , n} (n > 0) a vertex set

∆ a simplicial complex on V s.t. ∆ ̸= ∅

F(∆) a set of facets of ∆

m = ♯F(∆) (> 0) its cardinality

S = k[X1, X2, . . . , Xn] a polynomial ring over a field k

I∆ = (Xi1Xi2 · · ·Xir | {i1 < i2 < · · · < ir} /∈ ∆)

R = k[∆] = S/I∆ the Stanley-Reisner ring of ∆
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We consider the Z-graded ring R = k[∆] =
∑

n≥0Rn and put

In :=
∑
k≥n

Rk = mn for ∀n ∈ Z

where m := R+ =
∑

n>0Rn. Then F = {In}n∈Z is an m-adic filtration of
R and I1 ̸= R.

.
Proposition 5.2
..
......If ∆ is shellable, then R′(m) is a sequentially C-M ring.
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Notice that

p ⊉ I1 for ∀p ∈ AssR ⇐⇒ F ̸= ∅ for ∀F ∈ F(∆)

⇐⇒ ∆ ̸= {∅}.

.
Theorem 5.3
..

......

Suppose that ∆ is shellable with shelling order F1, F2, . . . , Fm ∈ F(∆) s.t.
dimF1 ≥ dimF2 ≥ · · · ≥ dimFm and ∆ ̸= {∅}. Then TFAE.

(1) R(m) is a sequentially C-M ring.

(2) dimFi ≥ ♯F(⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩) for 2 ≤ ∀i ≤ m.
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By Theorem 5.3 we get the following.

.
Corollary 5.4
..

......

Suppose that dimFm ≥ 1. If ⟨F1, F2, . . . , Fi−1⟩ ∩ ⟨Fi⟩ is a simplex for
2 ≤ ∀i ≤ m, then R(m) is a sequentially C-M ring.
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.
Example 5.5
..

......

Let ∆ = ⟨F1, F2, F3⟩, where F1 = {1, 2, 3}, F2 = {2, 3, 4} and
F3 = {4.5}. Then ∆ is shellable with numbering F(∆) = {F1, F2, F3}
and

⟨F1⟩ ∩ ⟨F2⟩ , ⟨F1, F2⟩ ∩ ⟨F3⟩

are simplexes, so that R(m) is a sequentially C-M ring.

∆ =
1 4 5

2

3
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.
Example 5.6
..

......

Let ∆ = ⟨F1, F2, F3, F4⟩, where F1 = {1, 2, 5}, F2 = {2, 3}, F3 = {3, 4}
and F4 = {4, 5}. Then ∆ is shellable with numbering
F(∆) = {F1, F2, F3, F4}. We put ∆1 = ⟨F1, F2, F3⟩, ∆2 = ⟨F4⟩. Then

♯F(∆1 ∩∆2) = 2 = dimF4 + 1 > dimF4,

so that R(m) is NOT a sequentially C-M ring by Theorem 5.3.

1

2

3 4

5

∆ =

Naoki Taniguchi (Meiji University) Sequentially Cohen-Macaulay Rees modules March 21, 2015 16 / 18



. . . . . .

Introduction Definition of seq C-M modules Main results Graded case Application References

Thank you so much for your attention.
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